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Abstract

Motivation: Metagenomic read classification is a critical step in the identification and quantification
of microbial species sampled by high-throughput sequencing. Although many algorithms have been
developed to date, they suffer significant memory and/or computational costs. Due to the growing popularity
of metagenomic data in both basic science and clinical applications, as well as the increasing volume of
data being generated, efficient and accurate algorithms are in high demand.
Results: We introduce MetaOthello, a probabilistic hashing classifier for metagenomic sequencing reads.
The algorithm employs a novel data structure, called l-Othello, to support efficient querying of a taxon
using its k-mer signatures. MetaOthello is an order-of-magnitude faster than the current state-of-the-
art algorithms Kraken and Clark and requires only one-third of the RAM. In comparison to Kaiju, a
metagenomic classification tool using protein sequences instead of genomic sequences, MetaOthello
is three times faster and exhibits 20-30% higher classification sensitivity. We report comparative analyses
of both scalability and accuracy using a number of simulated and empirical datasets.
Availability: MetaOthello is a stand-alone program implemented in C++. The current version (1.0) is
accessible via https://doi.org/10.5281/zenodo.808941.
Contact: liuj@cs.uky.edu
Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction
Metagenomics is the study of genomic content obtained in bulk from
an environment of interest, such as the human body (Huttenhower and
Human Microbiome Project Consortium, 2012), seawater (Venter et al.,
2004), or acidic mine drainage (Tyson et al., 2004). Metagenomics studies
often generate tens of millions of sequencing reads in order to capture the
presence of microbial organisms and quantify their relative abundances,
rendering the classification and analysis of these data a logistical challenge.

One of the major computational challenges in the analysis of
metagenomic data is the classification of each sequencing read into the
most-specific biological taxon to which sequence conservation supports

its assignment. Specifically, a read is classified as belonging to a taxon
if it has high sequence similarity with the reference genomes collected
for that taxon, a process made possible by the large deposits of reference
sequences collected in recent years for a variety of microbial species.
In 2014 alone, more than 10,000 sequence records were newly added to
the NCBI RefSeq database thanks to the accessibility of high-throughput
sequencing technology.

Existing classification methods can be divided into two broad
categories: alignment-based and alignment-free. The former approach,
implemented most popularly as BLAST (Altschul et al., 1990), assigns
each read to the taxon that affords the best alignment with its reference
genomes. Several methods, including MEGAN (Huson et al., 2007),
PhymmBL (Brady and Salzberg, 2009), and NBC (Rosen et al., 2011),
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apply additional machine-learning techniques to BLAST results to increase
classification accuracy. These methods are often slower than BLAST
alone, rendering them computationally prohibitive for large-scale analysis
of many millions of short reads. However, the recent development of
Centrifuge (Kim et al., 2016) has significantly improved the scalability
of alignment-based algorithm using FM-index. Besides using genomic
sequences as reference, the recently published tool Kaiju (Menzel and
Krogh, 2015) performs alignments towards protein sequences, achieving
faster classification speed than existing tools.

The other line of work, pioneered by LMAT (Ames et al., 2013)
and Kraken (Wood and Salzberg, 2014), classifies a read using exact k-
mer matches between the read and reference sequences belonging to the
target taxon, thereby avoiding inefficient base-by-base alignment while
maintaining a sensitivity and specificity comparable to the alignment-
based approach. This approach is generally faster than alignment-based
methods and allows for greater flexibility in reference material because it
requires only the collection of k-mers extracted from reference sequences
belonging to each taxon. Thus k-mers extracted from DNA or RNA
sequencing data can be included as reference material without being
assembled, increasing the sensitivity of the algorithm in capturing natural
variants that are often missed using reference genomes alone.

The above alignment-free approaches rely on the use of indexing
structures for k-mer matching. For example, Kraken indexes its
lexicographically sorted k-mer database using a minimizer offset array,
while Clark uses a hash table to store the mapping between a k-mer and its
classification information. Both Kraken and Clark require computers with
large memory to support the construction of their indexing structure (at
least 170 GB RAM) and k-mer querying during classification (at least 70
GB RAM). Although there are variations of both algorithms with smaller
memory footprints, they often afford significantly lower accuracy and
much slower execution speed compared to the full version. For this reason,
the ever-increasing amount of sequencing and reference genome data call
for tools with better scalability in both memory and computation.

In this paper, we present a new algorithm, dubbed MetaOthello,
for taxonomic classification of sequencing reads. Our algorithm builds
upon taxon-specific k-mer signatures to support direct assignment to
any level in the taxonomy. It employs a novel data structure, l-Othello,
to support ultra-fast k-mer classification, achieving at least an order-
of-magnitude improvement in speed over the state-of-the-art methods,
Kraken and Clark, and three times faster than Kaiju. In the meantime,
MetaOthello also substantially reduces the memory footprint, typically
requiring only one third of the aforementioned methods. This modest
memory requirement allows our algorithm to run on typical lab servers
with 32 GB RAM, rendering it more accessible to biological researchers
than those with memory requirements achievable only by supercomputers.
Additionally, our algorithm is capable of conducting hierarchical top-down
taxonomic classification and delivers performance competitive to, if not
better than, other algorithms in both sensitivity and specificity as validated
by benchmarking on a variety of datasets.

2 Algorithms

2.1 k-mer Taxon Signatures

A k-mer is a length k subsequence of genomic sequences; for any
sequence of length L, there exist a maximum of L− k + 1 possible k-
mers. Metagenomic reference material consists of one or more complete
reference genomes belonging to an organism. Increasingly sophisticated
sequencing techniques have permitted discovery of distinct reference
genomes for a single species of organism, thereby capturing genomic
variations that are often important to the functionality of the microbial
species. The number of genomes (whether draft or complete) available

as metagenomic reference material increases with each new discovery. If
we consider each dataset as a collection of k-mers, a given taxon can be
described by the set of k-mers present in the reference sequences belonging
to its taxonomic subtree. The problem of classifying a metagenomic read
thus simplifies to the identification of the taxon that best matches the set of
k-mers associated with the target read. When k is sufficiently large (e.g.,
k > 20), the majority of k-mers are unique to the species carrying them.
These species-specific k-mers may serve as signatures, directly implicating
the appropriate taxonomic classification. However, a significant proportion
of k-mers is present in multiple species, making them unique only to higher-
ranking taxa. In this paper, we formalize the taxonomic specificity of a
k-mer as the signature of a taxon: A k-mer is considered to be a signature
of a taxon if (1) the k-mer does not appear in any genomic references
belonging to ancestors or siblings of the target taxon, but only to sequences
belonging to the taxon’s subtree, and (2) the k-mer is not a signature of
any lower-ranked taxon in the subtree. Equivalently, the taxon evincing a
k-mer signature is the lowest common ancestor (LCA) of all species in the
taxonomy whose reference genomes contain that k-mer.

In this way, as illustrated in Fig.1A, the set of all k-mers present in the
genomic references of a taxonomy can be divided into disjoint collections,
each of which contains the set of signature k-mers belonging to a single
node in the taxonomy tree. Formally, let S be the set of all k-mers present in
genomic references annotated by the taxonomy and let T = {1,2, · · · , |T |}
be the taxa (nodes) present in the taxonomy. Then S can be divided into |T |
disjoint sets, S = {S0,S1, · · · ,St , · · · ,S(|T |−1)}, where for any node t ∈ T ,
St corresponds to the set of k-mer signatures belonging to taxon t. Thus,
there exists a mapping, g : S→ T , such that g(s) = t if the k-mer, s ∈ S, is
a signature of the taxon, t ∈ T .

2.2 k-mer Classification with l-Othello

The core data structure of MetaOthello is called l-Othello. l-Othello is
essentially a hashing classifier. It is capable of classifying a key to the
appropriate member of a large collection of categories with high efficiency
in memory and speed. In our particular application, l-Othello supports the
mapping between a k-mer signature and the corresponding taxon.

Previously, we developed a similar data structure in the field of
computer networking systems, called l-POG (Yu et al., 2016). l-POG
is designed for fast Forwarding Information Base Queries. In this paper,
we present l-Othello. l-Othello is specially designed for supporting k-mer
classification queries. We also provide more detailed theoretical analysis
for l-Othello in this paper, especially its behavior on alien k-mers.

2.2.1 Overview of the l-Othello data structure
l-Othello maintains a query function between any given k-mer and a taxon:
τ : SU → {0,1, · · · ,2l − 1}, where SU is the universal set of k-mers (i.e.,
SU = σ k , σ = {A,C,G,T}). l is determined by the total number of taxa T ,
where l = dlog2 |T |e. The algorithm satisfies the following properties: (1)
l-Othello is always able to retrieve the correct taxon ID corresponding to
a valid k-mer signature; that is, for any s ∈ S, τ(s) = t, where t is the ID
of the taxon to which s is specific. (2) When provided an alien k-mer (i.e.,
a k-mer that does not appear in the reference sequences), l-Othello is able
to recognize the alien with high success rate but may carry a slight risk of
assigning it to a random taxon in the taxonomy.

Fig. 2 shows an example l-Othello structure. An l-Othello data
structure works by maintaining a pair of hash functions, 〈ha,hb〉 and two
arrays of l-bit integers, A and B. ha : SU →{0,1, · · ·ma−1} and hb : SU →
{0,1, · · · ,mb−1}, where ma and mb are integer values determined during
l-Othello construction. The relationships among the elements of A and B
can be viewed as a bipartite graph G = (U,V,E), where nodes in U and V
correspond to elements in A and B respectively. A query of k-mer s on the
graph yields a node index i = ha(s) in U and a node index j = hb(s) in V .
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Fig. 1. Illustration of MetaOthello algorithm. A: an example of taxonomy with reference sequences in the leaf nodes. 3-mers that are signatures to each node are highlighted in red colors
with different shades. B: a two-step approach in read classification.

Fig. 2. An example of l-Othello with l = 3 classifying n = 5 k-mers. Left: Bipartite graph
G and corresponding bitmaps A and B. Each edge in G represents a k-mer. Hash function ha

and hb maps the k-mer s into corresponding locations in A and B. Right: Query of u returns
τ(s) = (001)2 = 1.

The classification of k-mer s is determined by the values at A[ha(s)] and
B[hb(s)], via a ⊕ (bitwise XOR) operation:

τ(s) = A[ha(s)]⊕B[hb(s)].

The bit-wise XOR operation of integers has the following property: For any
l-bit integer x, x⊕ x = 0, x⊕0 = x.

When l-Othello is properly constructed, τ(s) = t for any k-mer specific
to taxon t, i.e., s ∈ St . The success of l-Othello relies on assigning bitmap
values on both sides of the bipartite graph, where the⊕ operation between
two nodes can directly generate the class membership. Setting the bitmap
of two nodes with no initial values is fairly simple and can be achieved in
multiple ways. For example, when l = 1 and assuming the membership
of a key is 1, we can assign the bit values of the two nodes ui and v j

as either A[i] = 0,B[ j] = 1 or A[i] = 1,B[ j] = 0. However, if the value
of one node has already been determined by another key, then only the
remaining value is altered. For example, if A[i] is already set as 0, given
A[i]⊕B[ j] = 1, then B[ j] = 1. In the worst-case scenario, both A[i] and
B[ j] have already been determined by their involvement with other keys.
This situation creates a cycle in the graph when edge ui and v j is added,
possibly resulting in a conflict and failed assignment of a bit value. When a

conflict arises, we have two options: remove the k-mer or select a different
hash function. Theorem 1 shows that for a randomly selected pair of hash
functions 〈ha,hb〉, the probability of G being cyclic is extremely low. In
our experiment, fewer than 100 k-mers among 6 billion were removed due
to conflicts. Additionally, because multiple k-mers manifest in one read,
losing one k-mer does not significantly affect the accuracy of the algorithm,
so we may omit k-mers whose inclusion would cause a conflict.

Theorem 1. Suppose ha,hb are randomly selected from a family of
random hash functions such that ha : S→{0,1, · · · ,ma−1} and hb : S→
{0,1, · · · ,mb−1}. Given a set of k-mers S = S0∪S1∪·· ·S2l−1, let n = |S|.
Construct a bipartite graph G = (U,V,E), where an edge (ui,v j) ∈ E if
and only if there is a k-mer s ∈ S such that ha(s) = i and hb(s) = j. Let χ

be the number of cycles in G. Then χ converges to a Poisson distribution
with parameter λ =− 1

2 ln(1− c2), where c = n√
mamb

.

The proof of Theorem 1 can be found in Supplementary Section 1. We
recommend the values of ma and mb as follows: Let ma and mb be powers
of 2, where ma is the smallest value such that ma ≥ 1.33n, and mb is the
smallest value such that mb ≥ n. As a result, we have 2.67n≤ma+mb < 4n
and 0.14 < λ < 0.41. In practice, we can always expect the number of
cycles in an l-Othello to be less than than 2 with probability 97%, and
smaller than 9 with probability higher than 99.999%.

2.2.2 Time and Space Complexity for l-Othello Construction and
Query

Construction Complexity:The construction of the l-Othello data structure
generally follows a depth-first traversal of the bipartite graph, thus the
complexity is O(n), where n is the total number of k-mers. The memory
complexity is O(ln), where l is the number of bits to encode the number
of categories. We can further reduce the memory cost by dividing the
set of k-mers into smaller groups based on prefixes, commonly of length
3, corresponding to g = 64 groups. Each group contains approximately
n
g k-mers. For each group, we build an l-Othello, using time O( n

g ) with
memory cost O( n

g ). In total, constructing g l-Othello structures still takes
O(n) time.
Query Complexity: For each query τ(s), l-Othello computes two hash
values ha(s) and hb(s), and accesses two memory locations A[ha(s)] and
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B[hb(s)]. The time complexity is O(1). This procedure only includes a few
basic arithmetic operations, resulting in an extremely fast execution speed.

2.2.3 On Alien k-mers
An alien k-mer is defined as a k-mer that is not included during the
construction of an l-Othello. In the context of taxonomic classification,
they are those k-mers that are not included in any of the reference materials.
Alien k-mers often arise due to noise or genomic sequences belonging to a
novel species sampled by a sequence read. We have designed two strategies
to detect alien k-mers. First, we would like to increase the randomness of
assignments in the case of alien k-mers; secondly, we may add another bit
in the bitmap (i.e., let l > logd|T |e), doubling the number of categories,
so that an alien k-mer has a much higher chance of being assigned to alien
categories, which are the categories not used by existing taxon labels.

Here we show how we may leverage the randomness of alien
assignment to predict an alien k-mer within the l-Othello itself. We first
discuss the query result for l = 1, and then we extend it to l-Othello.
When l = 1, Othello classifies k-mers (s ∈ S = S0 ∪ S1) into S0 and S1.
Each element in A or B is a 1-bit value. For a query of an alien k-
mer s′ /∈ S, l-Othello still returns a value τ(s′) ∈ {0,1}. For alien keys,
τ(s′) = A[ha(s′)]⊕B[hb(s′)]. Let a0 and a1 be the fraction of 0s and 1s in
the bitmaps A respectively, i.e., a0 =

|{t|A[t]=0}|
ma

, a1 =
|{t|A[t]=1}|

ma
. Similarly

b0 and b1 are the fractions in B. Suppose ha and hb are uniformly distributed
random hash functions, and s′ is an arbitrary k-mer in the universal set,
then τ(s′) returns 1 with probability p1 = a0b1 + a1b0. Similarly, τ(s′)
returns 0 with probability p0 = a0b0 +a1b1.

For l-Othello, a similar property also holds. Let p(t) be the probability
that the query of an alien k-mer returns exactly t. τ(s′) = t indicates
A[ha(s′)]⊕B[hb(s′)] = t. Note that ha and hb are uniform random hash
functions and are not correlated. Hence,

p(t) = P(τ(s′) = t) =
2l−1

∑
x=0

axbx⊕t

Where ax is the fraction of elements has value x in a and bx⊕t is the fraction
of elements has value x⊕ t in B.

Given a particular l-Othello, we can always compute p(t) values for all
t = 0,1, · · · ,2l − 1 using time O(22l + n). These p(t) values are affected
by the occurrence frequency of each l-bit integer, namely ax and bx for all
0≤ x< 2l . In some cases, these values are not uniformly distributed, which
may result in imbalance among p(t). Under such circumstances, we can
always tune these values by flipping the bitmaps of a connected component
in the bipartite graph without changing τ(s) for s ∈ S. In practice, we can
always tune the values so that p(t) is of the same order of magnitude for
all t, and all of them are approximately 2−l . Two tuning approaches are
described in Supplementary Section 2.

We can also explicitly detect alien k-mers by by increasing l, thus
intentionally expanding the number of targeted categories, where the
majority of them are dummy (alien). Due to the randomness of class
assignment in the presence of an alien, many alien k-mers are likely to fall
in these dummy categories, and are thus recognized as alien. Formally, if
for some s∗, τ(s∗)≥ |T |, s∗ is an alien. Thus, alien k-mers are recognized

in this stage with probability ∑
2l−1
x=|T | p(x)∼

2l−|T |
2l .

2.3 Taxonomic Classification of Sequencing Reads

As illustrated in Fig.1B, given any sequencing read, our algorithm iterates
over each k-mer from the beginning of the read and, for each k-mer,
retrieves the taxon to which it is specific using l-Othello. Taxonomic
classification of the read is determined by assembling the taxa for all k-
mers in the read. The classification is straightforward when all k-mers
indicate the same taxon, but this is not often the case. Disparate taxa are
considered to be consistent if they belong to the same path in the taxonomy,

meaning that one assignment is the higher rank of the other. When these
taxa belong to different branches, they represent conflicting information.
The issue is further complicated by the possibility of false taxonomic
information returned from querying alien k-mers, where the k-mer in the
read does not appear in any of the reference sequences.

To tackle this challenge, we have designed a window-based
classification approach. A window is defined as a sequence of consecutive
k-mers that are assigned to the same taxon of a given level. The window-
based approach guards against false-positive assignments due to alien
k-mers. Assuming that the taxon ID returned by an alien k-mer is random,
the chance of having two consecutive alien k-mers return the same taxon
ID is

2l−1

∑
t=0

(p(t))2 ∼ 2−l .

This value is very small, regardless of k. Additionally, each window
corresponds to a maximum read subsequence that matches the reference
sequences. Thus, the longer the window, the longer the subsequence
match, and the less likely the match is random. In comparison, other
algorithms such as Kraken and Clark count the total number of k-mer
matches, regardless of their spatial distribution across the read.

If multiple taxon windows are available, MetaOthello scores each
of them using the summed squares of window sizes as in the following
formula; the taxon with the maximum score will be selected:

Score(t) = ∑(wt
i)

2

where wt
i denotes the number of k-mers in the ith window classified to

taxon t.
A k-mer signature belonging to a taxon is also specific to its higher-

ranking taxa, so at higher taxonomic ranks, there exist more k-mers to
distinguish a taxon from its siblings. Thus, longer k-mer windows and
more accurate classifications are expected at higher taxonomic ranks.
Under this assumption, a “top-down" strategy is adopted during read
classification. Given a read sequence, MetaOthello starts the classification
at the top rank and continues the classification down the ranks until there
does not exist a sufficiently large k-mer window supporting the level.
Based on the k-mer distribution in each taxon, MetaOthello establishes a
threshold on minimum window-size when the classification on that taxon
requires. Theorem 2 shows that the minimum window size threshold can
be precomputed for each taxon prior to read classification. The minimum
window size required for a taxon is determined by the probability of an alien
k-mer query on l-Othello returning a taxon rooted in t and the acceptable
false-positive rate. The larger the size of the taxon subtree, the higher the
probability that a random alien k-mer may match to t and thus the longer the
window required for reliable classification. Additionally, a larger window
size will be required in order to lower the false-positive rate.

Theorem 2. Given a user-defined false-positive rate λ and the total read
number M, the minimum window-size threshold required for a taxon t can
be computed as logp(t)

λ

(1−λ )M , where pt denotes the probability that an
alien k-mer query on l-Othello returns a value in the taxon subtree with
root t.

The proof is presented in Supplementary Section 3. For example, when
t is a genus-level node, supposing l = 12, then p(t) ∼ (1+ 7)2−l = 1

256 .
Given 10 million reads and suppose λ = 0.001, then logp(t)

λ

(1−λ )M = 3.42,
and only windows larger than three will be taken into consideration when
determining the read assignment.
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Fig. 3. Correlation between species-specific k-mer signatures and classification accuracy when k=20 (A) and k=31 (B). In each panel, the central figure depicts the correlation
between species-specific k-mer proportion and read-classification accuracy for all species; the top histogram shows the distribution of species as a function of species-specific
k-mer proportion, and the right histogram shows the distribution of classification accuracy for all species.

3 Experimentation and Evaluation

3.1 Classification Accuracy and the Relative Abundance of
Taxon-Specific k-mers

Accurate classification of a read to a taxon is largely dependent upon
the presence of k-mer signatures. Thus the abundance of these signature
k-mers (i.e., the proportion of taxon-specific k-mers among all k-mers
present in the reference sequences for the taxon) becomes an important
indicator of the capability of our algorithm. Thus we first investigate the
correlation between classification accuracy and the relative abundance of
taxon-specific k-mers.

Classification accuracy is computed as the fraction of reads assigned
correctly. Using a next-generation sequencing (NGS) read simulator
called ART (Huang et al., 2012), we simulated 10,000 reads for
each of 2,629 reference genomes in the NCBI RefSeq bacterial
genome database, for a total of 26,290,000 reads. The database
is available at ftp://ftp.ncbi.nih.gov/genomes/archive/
old_refseq/Bacteria/. Each read is paired-end and of length 100
bp with a fragment size of 250 bp, generated using the default error profile
for the HiSeq platform. Figure 3 shows the read-classification accuracy
for each species as a function of species-specific k-mer proportion,
where read assignments were generated by the MetaOthello algorithm
using 20-mers or 31-mers, respectively. The scatter plot for either k-
mer size demonstrates that the vast majority of all species manifest more
than 50% 20-mers that are species-specific, and almost all species have
75% species-specific 31-mers. Although in general more species-specific
k-mers afford better classification accuracy, these results suggest that
the presence of 50% or more species-specific k-mers affords suitably
high classification accuracy, thereby demonstrating the utility of k-mer
signatures in classifying metagenomic reads.

To investigate how the window-based approach improves MetaOthello’s
performance over the widely adopted count-based approach as in Kraken
and Clark, we implemented a count-based version of MetaOthello, and
compared its performance against that of the window-based version
executed on the same datasets. The results demonstrate the clear
advantages of a window-based approach over count-based, especially on
assignment precision. This suggests that the window-based approach is
more effective at eliminating the false positives caused by alien k-mers.
Detailed results are reported in Supplementary Section 5.

3.2 Comparison with the state-of-the-art tools

We now assess the performance of MetaOthello in comparison to three
of state-of-the-art tools: Kraken (version 0.10.5 beta), Clark (version
1.2.3), and Kaiju (version 1.4.4). Besides the newly published tool Kaiju,
Kraken and Clark were chosen based on the recommendation of a recent
benchmarking paper (Lindgreen et al., 2016), which evaluated 14 tools
using six datasets and subsequently declared Kraken and Clark the best
performers over Genometa (Davenport et al., 2012), GOTTCHA (Freitas
et al., 2015), LMAT (Ames et al., 2013), MEGAN (Huson et al.,
2007)(Huson et al., 2011), MG-RAST (Meyer et al., 2008), the One
Codex webserver, taxator-tk (Dröge et al., 2015), MetaPhlAn (Segata
et al., 2012), MetaPhyler (Liu et al., 2010), mOTU (Sunagawa et al.,
2013), and QIIME (Caporaso et al., 2010). The comparison was
benchmarked against three publicly available datasets: HiSeq, MiSeq, and
SimBA5. The same datasets have been used multiple times to evaluate a
number of metagenomic classification tools, including Kraken in previous
studies (Wood and Salzberg, 2014). All tools were executed using the same
reference database (NCBI RefSeq as of October 1st, 2016), and all other
parameters follow the default settings.

3.2.1 Classification Accuracy
We first compare classification accuracy. Three different k-mer lengths (20-
mer, 25-mer, and 31-mer) are used to assess the performance relationship
with k-mer size for Kraken, Clark, and MetaOthello; Kaiju is not a k-mer-
based algorithm. To facilitate the comparison and to mimic the sequencing
data generated by current platforms, we discarded reads shorter than 36
bp and those whose taxon is not included in the reference taxonomy.

Reads were classified by each algorithm at three taxonomic levels:
phylum, genus, and species. MetaOthello, Kraken, and Kaiju were able to
classify reads at the three levels simultaneously, while Clark required three
separate runs to conduct similar classifications. Thus for Clark, results from
these runs were merged for the purpose of direct comparison. Precision
and sensitivity were computed at each of the three classification levels.
Precision is defined as the ratio between correctly assigned reads and the
total number of reads in an assignment; sensitivity is calculated as the
fraction of total reads assigned correctly. F-score (i.e., the harmonic mean
of precision and sensitivity) was also calculated to quantify the balance
between these two metrics. Results of the comparison are shown in Table 1.

In general, longer k-mers enhance the precision of read classification
but decrease sensitivity, as observed in MetaOthello, Kraken, and Clark.
Within each dataset, the overall winner (in bold) was the one with highest
F1-score when considering across all three k-mer sizes. In phylum-level
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classification, MetaOthello outperforms the other algorithms in all three
datasets all using 20-mers. At both genus and species levels, MetaOthello
exhibits the best performance on two out of the three datasets using
either 25-mers or 20-mers. Kraken performs the best in the remaining
comparisons, followed closely by MetaOthello in both cases. In general,
Kaiju delivered much lower (20% to 30%) sensitivity compared to the
other three tools, due to its lack of capability in classifying reads from non-
protein coding regions. We also ran Kaiju using two additional databases,
nr and proGenomes, as recommended in Kaiju’s manual. Although higher
sensitivities were achieved in some datasets at some taxonomic levels,
the overall accuracy is still considerably lower than the other algorithms.
Detailed results of the two additional runs are reported in Supplementary
Section 6.

3.2.2 Runtime and Memory

Fig. 4. Billion bases processed per minute by each tool with three k-mer length settings
using 8 threads.

Speed benchmarks were performed using the servers from Lipscomb
High-Performance Computing at the University of Kentucky. The servers
are equipped with Dell R820, Quad Intel E5-4640 8-core (Sandy Bridge)
@ 2.4 GHz and 512 GB/node of 1600 Mhz RAM. Each algorithm was
executed using eight threads and k-mer lengths as specified previously;
all other parameters follow the default settings. The speed for each tool
is presented in Figure 4. In general, MetaOthello achieved the highest
processing speed, clocking roughly 1 billion bases per minute. This figure
represents an order-of-magnitude improvement over Kraken and Clark, the
two most-rapid state-of-the-art tools within the category of alignment-free
classifiers. Impressively, the high speed does not entail a compromise in the
memory requirement. MetaOthello only consumes about one-third (peak
memory 27 GB) the RAM required by Kraken and Clark (peak memory
73 GB).

The construction of the MetaOthello index from the NCBI RefSeq
bacterial genome sequence database requires roughly 6 hours with peak
memory usage up to 40 GB using 16 threads. In contrast, Kraken and
Clark used 164 GB and 120 GB respectively for index construction but
both finished under 4 hours with 16 threads.

In summary, MetaOthello achieves a significant speedup with much
smaller memory footprint in comparison with Kraken and Clark while
delivering competitive or even superior performance in classification
accuracy. While Kaiju is relatively scalable, it suffers from low sensitivity
in classification.

3.3 Metagenomic Classification of Real Datasets

3.3.1 Human Microbiome Project data
To assess the performance of MetaOthello relative to Kraken, Clark,
and Kaiju on real datasets, the three algorithms were run on sequencing
data from three saliva samples (NCBI SRA accessions: SRS015055,
SRS019120, and SRS014468) used in the Human Microbiome Project
(Human and Project, 2012). We ran the three k-mer-based algorithms at
each of three different k-mer length settings (20-mer, 25-mer, and 31-mer)
as with the simulated data. The three samples were analyzed separately,
and the results were pooled together to assess the relative abundances of
species. The top five most-abundant genera are presented in Table 2. The
four tools reported the same five most-abundant genera: Streptococcus,
Haemophilus, Prevotella, Veillonella, and Neisserlia, all of which are
known to be associated with human saliva. Interestingly, although the
absolute abundance (i.e., the fraction of total reads assigned to a given
genus) varies with k-mer size, the relative abundances remain stable except
for Kaiju. The false-positive rate, however, cannot be assessed in this case.

4 Conclusion and Discussion
In this paper, we present MetaOthello, a novel metagenomic sequencing
read classifier. MetaOthello leverages a novel probabilistic hashing
structure, l-Othello, to conduct taxonomic classification using taxon-
specific k-mer signatures. The algorithm delivers ultra-fast and memory-
efficient solutions to k-mer-based taxonomic classification. Within the
set of alignment-free approaches, MetaOthello achieves an order-of-
magnitude improvement in classification speed relative to the fastest
algorithms, Kraken and Clark, while reducing the RAM requirement
from 70G to 27G. MetaOthello exhibits high sensitivity and precision
competitive with Kraken and Clark, and in most cases achieves a better
balance between the sensitivity and specificity (as quantified by F-score).
It is also three times faster than the protein alignment-based method Kaiju
and delivers much higher classification accuracy.

Besides the application of metagenomics, we also expect that our
data structure l-Othello may benefit any k-mer-based sequencing-matching
methods with its advantages in memory and speed efficiency.
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Phylum Genus Species
Prec / Sens / F-score Prec / Sens / F-score Prec / Sens / F-score

20mer 98.4 / 95.0 / .967 97.2 / 92.5 / .948 82.0 / 69.4 / .751
MetaOthello 25mer 99.4 / 92.2 / .957 99.1 / 91.2 / .950 84.2 / 69.1 / .760

31mer 99.4 / 89.0 / .939 99.3 / 88.2 / .934 85.7 / 68.0 / .758
20mer 97.8 / 94.8 / .963 96.1 / 92.0 / .940 80.2 / 69.2 / .743

HiSeq Kraken 25mer 99.7 / 92.3 / .959 99.1 / 91.4 / .951 83.7 / 69.4 / .759
31mer 99.7 / 88.3 / .937 99.3 / 87.6 / .931 85.4 / 67.6 / .745
20mer 97.7 / 95.5 / .966 95.1 / 92.6 / .939 76.4 / 69.5 / .728

Clark 25mer 99.7 / 92.1 / .958 99.1 / 91.2 / .950 83.5 / 69.2 / .757
31mer 99.7 / 88.8 / .940 99.3 / 88.1 / .934 85.4 / 68.0 / .757

Kaiju 99.4 / 68.7 / .812 98.6 / 65.1 / .785 89.2 / 34.7 / .499
20mer 99.2 / 97.5 / .983 96.2 / 92.2 / .942 91.8 / 78.6 / .846

MetaOthello 25mer 99.6 / 95.4 / .975 97.4 / 91.4 / .943 93.0 / 78.3 / .850
31mer 99.6 / 92.9 / .961 98.0 / 89.7 / .937 93.8 / 77.2 / .847
20mer 99.0 / 97.5 / .983 95.8 / 92.2 / .939 91.0 / 78.9 / .845

MiSeq Kraken 25mer 99.8 / 95.1 / .974 97.4 / 91.2 / .942 92.7 / 78.3 / .849
31mer 99.9 / 92.3 / .960 98.0 / 89.3 / .935 93.6 / 76.8 / .844
20mer 98.8 / 97.8 / .983 94.4 / 92.5 / .934 86.9 / 78.8 / .826

Clark 25mer 99.8 / 95.2 / .975 97.1 / 91.5 / .942 91.9 / 78.5 / .847
31mer 99.9 / 92.7 / .962 98.0 / 89.8 / .937 93.4 / 77.3 / .846

Kaiju 99.5 / 75.7 / .860 98.5 / 68.0 / .805 95.2 / 40.6 / .570
20mer 99.9 / 99.7 / .998 99.6 / 95.8 / .977 99.3 / 84.2 / .911

MetaOthello 25mer 99.9 / 98.2 / .990 99.8 / 94.6 / .971 99.5 / 83.1 / .906
31mer 99.5 / 92.2 / .957 99.5 / 88.7 / .938 99.4 / 77.9 / .873
20mer 99.8 / 99.5 / .996 99.4 / 95.9 / .976 98.8 / 84.6 / .912

simBA5 Kraken 25mer 99.9 / 98.5 / .992 99.8 / 95.0 / .974 99.5 / 83.8 / .909
31mer 99.9 / 94.2 / .970 99.9 / 90.9 / .952 99.7 / 80.0 / .887
20mer 99.8 / 99.6 / .997 98.5 / 95.8 / .971 94.4 / 84.2 / .890

Clark 25mer 99.9 / 98.4 / .992 99.8 / 94.8 / .973 99.4 / 83.4 / .907
31mer 99.9 / 93.5 / .966 99.9 / 90.2 / .948 99.7 / 79.2 / .883

Kaiju 99.6 / 75.6 / .860 97.9 / 65.9 / .788 96.5 / 46.7 / .630
Table 1. Accuracy of read taxonomic classification in terms of precision, sensitivity, and F-score.

MetaOthello Kraken Clark Kaiju
k-mer length 20 25 31 20 25 31 20 25 31

Streptococcus 14.32 13.24 12.12 14.58 13.29 12.18 14.25 13.15 12.02 10.05
Haemophilus 6.999 6.626 5.938 7.089 7.134 6.005 6.952 6.411 5.894 4.773

Prevotella 5.621 4.893 4.226 5.774 5.012 4.270 5.590 4.567 4.193 7.653
Veillonella 3.321 2.668 1.924 3.441 2.931 1.976 3.231 2.587 1.891 5.168
Neisseria 2.215 1.860 1.525 2.279 1.941 1.552 2.213 1.779 1.510 3.113

Table 2. The proportion of reads classified into the top-five genera by each algorithm using different k-mer lengths.
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1 Proof of Theorem 1
Bipartite graph G = (U,V,E) satisfies |U |= ma, |V |= mb, E ⊂U ×V . Each edge (ui,v j) ∈ E represents a
k-mer s, ha(s) = i and hb(s) = j. Since ha and hb are uniform random hash functions, these edges can be
considered as randomly and uniformly chosen from all possible edges in U ×V with probability |E|

|U ||V | =
n

mamb
.

Consider a cycle in G, suppose the length of the cycle is 2t. This cycle is equivalent to a list of 2t edges:
(ui1,v j1), (v j1,ui2), (ui2,v j2), · · · , (uit ,v jt), (v jt ,ui1). These 2t edges are uniquely decided by a list of 2t
nodes u1,v1,u2,v2, · · · ,ut ,vt . The number of such cycles that possibly exist in G is(

ma

t

)(
mb

t

)
,

Here,
(a

b

)
= a!

b!(a−b)! . And each of these cycles exists with probability ( n
mamb

)2t

Apply the conclusion presented in (Botelho et al., 2012) (Page 3), we know that when n√
mamb

< 1−
O( 1√

mamb
), which is always satisfied because mamb ≥ 1.33n2, the number of cycles with length 2t converges

a Poission distribution with parameter λt , and

λt = (
n

mamb
)2t

(
ma

t

)(
mb

t

)
Let c = n√

mamb
, note that t� ma,t� mb, then we have

lim
t→∞

2tλt

c2t = 1

Hence the total number of cycles in G converges a Possion distribution with parameter λ , where

λ =
∞

∑
t=1

λt =−
1
2

ln(1− c2)

1



2 Approaches of tuning pt

p(t) denotes the probability of an alien query returns t for an l-Othello. Once l-Othello is constructed, the
p(t) values can be accordingly computed. In Othello, there are two array of l-bit integers, namely A and B.
We are able to modify the values in A and B without affecting any of the query results on the l-Othello. We
describe two possible approaches as follows.

• Note that there are some elements in A and B, these elements do not correspond to any k-mers. Hence,
we can assign any l-bit integer value to each of them, so that the occurrence frequency of each element
are balanced.

• For any connected component of the bipartite graph G, we can execute a XOR operation on all of its
elements in A and B. That is select any l-bit integer x and replace all A[i] values in the connected
component by A[i]⊕ x and replace all B[ j] values by B[ j]⊕ x simultaneously. As long as for each
connected components of G the corresponding values are all simultaneously replaced, this operation
does not affect any τ(s) values.

In practice, we can always tune the values so that p(t) is of the same order of magnitude for all t, and all of
them are approximately 2−l .

3 Proof of Theorem 2
We analyze the confidence of a K-mer window as follows. For a window of k-mers, let w be the length of
the window. Suppose the query result for these K-mers are τ(s1),τ(s2), · · · ,τ(sw). For a particular level of
the taxonomy tree, suppose that these k-mer belongs to taxon t, then τ(s1),τ(s2), · · · ,τ(sw) ∈ St , where St is
the set of the IDs of the nodes in the taxonomy subtree with the root t.

For consecutive w k-mers, let Gt be the event that this window of length w is from the taxon with ID t,
without any sequence error. Let Qt be the event that the query results of these k-mers belongs to St , namely
τ(s1),τ(s2), · · · ,τ(sw) ∈ St .

For a particular window of k-mers, let w be the length of the window, (i.e., there are k+w−1 bases in
this window.

Let Gt be the event that this window is actually from taxon t. We assume there is no sequencing error,
hence, when Gt the query results for these w k-mers satisfy τ(s1),τ(s2), · · · ,τ(sw) ∈ St . We use notation Qt
to describe the event that τ(s1),τ(s2), · · · ,τ(sw) ∈ St .

Now the problem is that if we observe event Qt , we may indicate two reasons exclusively. (1) Qt happens
as a result of Gt . (2) Note that for alien k-mers τ may return any integer, Qt happens as a result of the query
result of w alien k-mers. We use the probability P(Gt |Qt) to describe how confident we are, about that this
window is from taxon t.

As described, when Gt happens, Qt also happens. Hence P(Qt |Gt) = 1.
We estimate the value of P(Gt |Qt) as follow.

P(Gt |Qt) =
P(Qt |Gt)P(Gt)

P(Qt |Gt)P(Gt)+P(Qt |Gt)P(Gt)
=

P(Gt)

P(Gt)+P(Qt |Gt)P(Gt)
(1)

Let qt be the abundance of the window from taxon t. i.e., for a particular sample, randomly select one
window of length w among all windows in all reads from this sample, the probability that this window is
actually from taxon t. Hence P(Gt) = qt .

2



The value P(Qt |Gt) is estimated as follow.
Gt means that this window is not from taxon t. Gt indicates either one of the following sub-events: (1)

Cother: In this particular level of taxonomy tree, the window is from one other taxon t ′, which means the
query results τ(s1),τ(s2), · · · ,τ(sw) ∈ St ′ for a t ′ 6= t. Note that St ′ ∩St = /0, this indicates P(Qt |Cother) = 0.
(2) Calien: This window is an alien of the taxonomy tree. Let ct = P(Calien|Gt), then 0 < ct < 1.

P(Qt |Gt) = P(Qt |Cother)P(Cother|Gt)+P(Qt |Calien)P(Calien|Gt) = P(Qt |Calien)ct (2)

As discussed in Section 2.2.3,
P(Qt |Calien) = q(t)w (3)

Combine Equation (1) (2) (3), we have

P(Gt |Qt) =
qt

qt + p(t)wct
(4)

Note that, qt > 0 and 0 < p(t)� 1. Hence P(Gt |Qt)→ 1 as t → ∞. This is to say when w increases,
P(Gt |Qt) also grows, and we can be more confident that when a query result shows that a window belongs
to some taxon t, it reflects the fact that this window is actually from this taxon t. In other words, a longer
window is more likely to come from this taxon than a shorter one.

Note that qt

qt +(p(t))wct
>

qt

qt +(p(t))w

.
We use a threshold value λ , when P(Gt |Qt)> 1−λ , we accept, which is equivalent to:

w > logp(t)
λqt

(1−λ )
∼ logp(t) λqt

Here, the value of qt can not be directly measured. However, for any actually detected taxon, we are sure
that qt ≥ 1

M , where M is the total number of reads in the dataset. Hence we use the following threshold to
decide the length of accepted windows.

w > logp(t)
λ

(1−λ )M
∼ logp(t)

λ

M

Note that we can always use the l-Othello to compute the value of p(t). Thus, given λ (λ = 0.001
by default), for each taxon, we can pre-compute the minimum size threshold for K-mer window. Only the
K-mer windows which are not shorter than its associated minimum window size will be accepted for final
assignment determination.

4 Implementation of MetaOthello
Jellyfish is used to collect all distinct k-mers from the designated reference genome database. For each
K-mer, we counted its frequencies among all taxa at each taxonomic rank and also stores the first taxon it
appears in. And a K-mer will be assigned to a taxon-specific K-mer set if it exists and only exists in that
taxon for that taxonomic level, and its frequency is larger than 1 at the next level.

l-Othello will be built given the set of k-mers and their associated taxon IDs.
During the classification of the sequencing reads, l-Othello will be loaded into the memory first. Read

will be classified one at a time sequentially. In the case of paired-end reads, information from both ends will
be combined as one score when selecting the best assignment.
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5 Results of count-based MetaOthello
To investigate how the window-based approach helps MetaOthello in sequencing read classification, we
implemented and ran a count-based version MetaOthello on the sequencing datasets used in section 3.1
and 3.2. Figure 1 shows the correlation of species-specific k-mer signatures with classification accuracy for
both window-based MetaOthello and count-based MetaOthello. Clearly, using both 20-mers and 31-mers,
the window-based implementation exhibits higher accuracy. Table 1 presents the results (read assignment
precision, sensitivity, and F-score) of count-based MetaOthello. Compared with the results of the default
window-based MetaOthello in section 3.2, significant decreases on precision can be easily found for count-
based MetaOthello.
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Figure 1: Correlation of species-specific k-mer proportion with classification accuracy for window-based
MetaOthello and count-based MetaOthello when k=20 (A) and k=30 (B).
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Phylum Genus Species
Prec / Sens / F-score Prec / Sens / F-score Prec / Sens / F-score

20mer 95.7 / 95.1 / .954 96.8 / 91.4 / .940 81.5 / 68.4 / .744
HiSeq 25mer 94.8 / 93.7 / .943 97.8 / 89.9 / .937 83.3 / 68.1 / .749

31mer 93.7 / 91.8 / .927 97.7 / 86.8 / .919 84.7 / 67.0 / .748
20mer 98.3 / 97.8 / .980 95.6 / 91.2 / .933 91.2 / 77.6 / .838

MiSeq 25mer 98.1 / 95.3 / .967 96.3 / 90.3 / .932 92.0 / 77.3 / .840
31mer 97.9 / 92.6 / .951 96.8 / 88.6 / .925 92.8 / 76.2 / .837
20mer 98.6 / 98.6 / .986 98.7 / 94.7 / .967 98.3 / 83.1 / .901

SimBA5 25mer 97.5 / 97.4 / .976 98.7 / 93.0 / .958 98.6 / 81.7 / .893
31mer 93.9 / 93.0 / .935 98.3 / 86.4 / .920 98.5 / 75.7 / .856

Table 1: Count-based MetaOthello read assignment precision, sensitivity, and F-score.

6 Results of Kaiju using the indices built on the two other options of
source databases

In section 3.2, to conduct the comparative studies in a fair manner, we ran Kaiju using the same source
database as the other three tools (MetaOthello, Kraken, and Clark). We notice that in Kaiju’s manual
(https://github.com/bioinformatics-centre/kaiju/blob/master/README.md), there two addi-
tional recommended databases (nr and proGenomes). To investigate how the choice of source database
affects its performance, we further ran Kaiju using both of the two databases. As reported in Table 2, though
some improvements are achieved (sensitivities at the phylum/genus level on HiSeq/MiSeq data), its perfor-
mance is still far behind that of MetaOthello, Kraken, and Clark.

Phylum Genus Species
Prec / Sens / F-score Prec / Sens / F-score Prec / Sens / F-score

HiSeq Kaiju nr 99.5 / 86.4 / .925 98.9 / 77.9 / .872 89.4 / 16.3 / .275
Kaiju proGenomes 99.3 / 83.6 / .908 97.5 / 77.0 / .861 81.1 / 41.7 / .551

MiSeq Kaiju nr 99.4 / 91.6 / .953 97.5 / 65.2 / .781 89.8 / 21.5 / .346
Kaiju proGenomes 98.2 / 87.8 / .927 93.2 / 71.5 / .809 85.1 / 53.8 / .660

SimBA5 Kaiju nr 99.1 / 79.5 / .882 96.8 / 62.7 / .761 92.6 / 36.2 / .520
Kaiju proGenomes 99.2 / 78.3 / .875 96.0 / 65.5 / .778 86.5 / 46.1 / .601

Table 2: Kaiju read assignment precision, sensitivity, and F-score using the indices built on the two other
options of source databases.
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